We are now in a position to determine the volume of fluid ∇_{0} that must exit the compression chamber via the knock-off tube in order for the pressure within the compression chamber to decay to ambient conditions in accordance with the postulated pressure-time function given by (4). We write

$$
\begin{equation*}
V_{0}=\int_{0}^{\infty} Q d t \tag{51}
\end{equation*}
$$

Since the volume rate of flow Q diminished in an exponential fashion, the limits of integration on the time t are zero and infinity.

From the combination of equations (50) and (51), we have

$$
\begin{equation*}
V_{0}=\frac{4 \pi P g}{\rho L} \sum_{j=1}^{\infty}\left[\frac{1}{\Theta_{1}}-v \lambda_{j}^{2}\right]\left(\frac{1}{\lambda_{j}^{3}}\right) \int_{0}^{\infty}\left[e^{-\lambda_{j}^{2} v t}-e^{-t / \oplus_{1}}\right] d t \tag{52}
\end{equation*}
$$

from which

$$
\begin{equation*}
V_{0}=\frac{4 \pi P_{g}{ }_{1}}{\mu L} \sum_{j=1}^{\infty} \frac{I}{\lambda_{j}^{4}} \tag{53}
\end{equation*}
$$

Recalling that λ_{j} is defined by equation (45), we can obtain from reference (e)

$$
\begin{aligned}
& \lambda_{1} R_{0}=2.4048 \\
& \lambda_{2} R_{0}=5.5201 \\
& \lambda_{3} R_{0}=8.5537 \\
& \lambda_{4} R_{0}=11.7915 \\
& \text { etc. }
\end{aligned}
$$

Thus equation (53) becomes

$$
\begin{equation*}
V_{0} \approx \frac{\pi \Theta_{1} P_{g} R_{0}^{4}}{8 \mu L} \tag{55}
\end{equation*}
$$

The time constant Θ_{1} can be found from equation (55) providing V_{0} is known. It is understood that the pressure in the compression chamber is increased by forcing an additional quantity of fluid into the chamber. From reference (f) the compressibility" of the subject fluids (SAE 10 and SAE 20 oil) can be closely approximated from the following equation

$$
\begin{align*}
\frac{V_{1}}{V_{2}}= & 1.00-\left(4.31 \times 10^{-8}\right) \mathrm{P}_{\mathrm{g}}+\left(5.51 \times 10^{-11}\right) \mathrm{P}_{\mathrm{g}}^{2} \tag{56}\\
& -\left(5.03 \times 10^{-18}\right) \mathrm{P}_{\mathrm{g}}^{3}
\end{align*}
$$

where the nomenclature is
V_{1}. . . volume of fluid under pressure P_{g} (volume of compression chamber), in ${ }^{3}$
∇_{2}. . . volume of fluid under atmospheric pressure (volume that would create pressure P_{g} if compressed to volume V_{1}), in ${ }^{3}$

Since $V_{0}=V_{2}-V_{1}$, then
$V_{0}=V_{1} P_{g}\left[\frac{\left(4.31 \times 10^{-8}\right)-\left(6.51 \times 10^{-12}\right) \mathrm{P}_{\mathrm{g}}+\left(5.03 \times 10^{-18}\right) \mathrm{P}_{\mathrm{g}}^{2}}{1.00-\left(4.31 \times 10^{-6}\right) \mathrm{P}_{\mathrm{g}}+\left(6.51 \times 10^{-12}\right) \mathrm{P}_{\mathrm{g}}^{2}-\left(5.03 \times 10^{-16}\right) \mathrm{P}_{\mathrm{g}}^{3}}\right](57)$

To simplify the writing of (57), we introduce the term K_{p}, defined as follows for the subject fluids

